

董家口港海域涌浪传播对船舶航行的影响*

宋学斌1,盛晓强1,王裕平1,殷成团2,张金善2

(1. 青岛引航站,山东青岛 266000;

2. 南京水利科学研究院,水文水资源与水利工程科学国家重点实验室,江苏南京 210029)

摘要: 涌浪会增加进出港船舶操纵难度和航行风险,研究港域波浪尤其是涌浪的传播对船舶操纵有重要意义。基于非 结构三角网格构建波流耦合数学模型,研究董家口港海域涌浪传播特性及波生流产生的规律。结果表明: 涌浪从外海传至 董家口港附近有效波高衰减过半,且波高初始值越大,衰减越剧烈; ESE 方向的涌浪更难衰减,这是大浪多发生在该方向的 原因; 涌浪波高越大波生流越大,低潮时波生流大于高潮时; 船舶工作区内波生流一般在 0.1 m/s 以内,为潮流最大流速的 5%~7%; 董家口港区的涌浪主要通过波浪对船体的直接作用影响船舶运动,波生流对船舶的作用较小,一般可忽略不计。

关键词:波流耦合;数值模拟;董家口;安全航行

中图分类号: U 661.3 文献标志码: A 文章编号: 1002-4972(2022)12-0040-08 DOI:10.16233/j.cnki.issn1002-4972.20221129.019

Effect of swell waves propagation on ship navigation in Dongjiakou Port sea area

SONG Xue-bin¹, SHENG Xiao-qiang¹, WANG Yu-ping¹, YIN Cheng-tuan², ZHANG Jin-shan²

(1.Qingdao Pilot Station, Qingdao 266000, China;

2.State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

Abstract: Swell waves increase the maneuvering difficulty and navigation risk for ships entering and leaving the port. It is of great significance to study the effect of propagation of wave on ship maneuvering, especially for swell waves in harbor areas. This paper constructs a wave-current coupling mathematical model based on the unstructured triangular grid, and studies the propagation characteristics of swell waves and law of wave-induced current generation in the near sea of Dongjiakou Port. The results indicate that the significant wave height declines more than half as the swell spreads from the open sea to Dongjiakou Port and larger initial wave height clarifies higher attenuation rate. The swell in the ESE direction is more difficult to attenuate which explains the reason why the large waves mostly occur in this direction. The wave-induced current under the low tide is larger than that under high tide and would be strengthen by the wave height. The wave-induced current in the ship working area is generally within 0.1 m/s, which is about 5% to 7% of the maximum tidal current. The effect of swell on the ship's motion in Dongjiakou Port area mainly comes from the direct action of the wave on the ship's hull, and the effect of the wave-induced current on the ship is small and generally negligible.

Keywords: wave-current coupling; numerical simulation; Dongjiakou; safe navigation

随着国际贸易需求的空前增长,国际航运业 蓬勃发展特别是船舶运输的大型化,使得船舶进 港航行安全成为备受关注的热点问题。根据交通 运输部统计数据,2021年全国港口完成货物吞吐量 155.5亿 t,山东港口青岛港完成货物吞吐量 6.3亿 t,同比增长4.3%,排名世界第5。董家口

收稿日期: 2022-04-06

^{*}基金项目:中央级公益性科研院所基本科研业务费专项(Y220012)

作者简介: 宋学斌(1966—), 男, 高级引航员, 从事船舶引航工作。

港区(青岛新港区)位于青岛市南翼的黄岛区琅琊 台湾,是天然优良深水港,规划吞吐量4亿t,可 容纳大型船靠泊。但由于港区直面外海,缺少地 形掩护,一直遭受东南方向涌浪的影响,尤其在 急流时刻,波流混合作用给船舶操纵和进出港带 来一定风险。本文从船舶安全航行的角度,研究 不同方向和不同级别的涌浪及波生流对董家口港 域的影响。

一般情况下, 涌浪在传播过程中不断衰减。 但在穿越风区时, 涌浪可能重新从风中吸收能量。 相比于风浪, 涌浪更加难以预测^[1]。世界上 80% 的洋面存在着涌浪^[2], 会对海上作业产生非常不 利的影响。根据微幅波理论, 波长更长, 波能流 更大。长周期涌浪的波速较大, 蕴含巨大的能量, 它在港口和船舶工程中常产生以下问题: 1)长波 的透射能力极强, 可以轻易透过可透浪式防波堤 进入港池内部; 2)由于长波的频率与系泊船的固 有频率相近, 所以长周期波会使系泊船的晃动更 加剧烈, 造成巨大的系缆力和撞击力^[3-5]; 3)长波 能量巨大会影响船舶航行的稳定性, 尤其当波长 超过船身长度时, 致使船舶航行的姿态发生剧烈 振荡(垂向运动、横摇和纵摇等)^[6]。

针对前两个问题,一些学者通过物理模型和 数学模型在潜堤消耗涌浪能量的能力方面进行了 研究^[7-11],如改变堤坝顶部水深和宽度参数、潜堤 的结构等,这些措施都可以在一定程度上削弱涌 浪对港池内船舶的影响。但对于港外航行或即将 进出港的船舶,涌浪的影响依然无法避免。波浪 对船舶的作用主要可分为两部分:1)波浪直接作 用在船上,对船舶运动姿态产生影响;2)波浪通 过辐射应力产生波生流,从而影响船舶运动。因 此,本文采用波流耦合数学模型,通过给定边界 处(外海)不同级别和方向的涌浪,研究传播至董 家口港区附近的涌浪传播和分布特性,以期为港 口使用单位和船舶航行相关模拟计算提供参考。

1 计算模型

本文采用有限体积法的 FVCOM 水流模块和

FVCOM-SWAVE 表面波模块进行波流耦合计算。 FVCOM-SWAVE 是将第三代海浪模型 SWAN 转成 非结构网格的有限体积方法的海浪模式。该模式 在水平面积上采用了非结构网格,具有复杂岸线 拟合较好和网格设置灵活的优势,可以实现与无 非结构网格有限体积 FVCOM 的直接耦合。

模型采用实时双向耦合机制,波浪模式先行 计算,将计算结果的辐射应力等参数传递给水流 模块;水流模块后计算,将水位流速等参数传递 给波浪模块,随后波浪模块开始下一步计算。波 浪和水流模块交替计算,并将自身的计算结果反 馈给对方,从而实现了实时双向耦合。本节仅对 波浪模块基础控制方程做简要介绍,具体细节和 FVCOM 相关控制方程可参考 SWAN^[12]和 FVCOM^[13] 的相关文献。

2 模型的建立和验证

2.1 模型范围及网格

董家口港地理位置见图 1。模型范围北起威海 市乳山市,南至盐城滨海县,外海边界距董家口 港约 200 km(图 2)。开边界潮位过程线由全球潮 波模型 NAO99b 提供,包含 8 个分潮(M2、S2、N2、 K2、K1、O1、Q1、P1)^[14]。采用非结构三角形网格和 垂向分层以适应复杂的地形及水深变化,研究区 附近网格最小尺度约 80 m,外海边界网格最大尺 度约 5 km,垂向分为 10 层。

图1 研究区域位置

图 2 董家口港海域波流耦合数学模型网格

海浪模式在频率和方向的二维谱空间上,频率以对数分布形式分成 30 段,最大频率 0.4 Hz, 最小频率为 0.04 Hz,方向离散为 72 段,谱空间角 度范围取 360°。考虑的物理过程包括:白帽耗散、 三波相互作用、底摩擦和水深变浅导致的波浪耗 散,其中白帽耗散项选用 KOMEN 参数形式;底摩 擦选用 JONSWAP 形式,底摩擦系数 *C*_b取 0.067; 水深浅化引起的波浪破碎中耗散系数取 1.0,海浪 破碎系数取 0.73,波浪计算时间步长 10 s。

2.2 模型验证

利用 2021-06-10T07:00—2021-06-13T07:00 现 场实测大潮潮位和流速、流向数据对模型进行验 证。潮位站主要布设在董家口港东港(中交码头) 和西港(矿石码头)内; 垂线测流点共 3 个, 布置 在港外(*C*₁、*C*₂和 *C*₃); 声学多普勒流速剖面仪 (ADCP)走航断面 DM1 布设在蝶形码头前沿, 验 证时在断面上自北向南均匀取 4 个点,并以起点 距离编号为 DM1-S0、DM1-S600、DM1-S1200 和 DM1-S1700, 如图 3 所示。董家口港海域实测大潮 潮位验证见图 4。可以看出,模型计算的潮位与实 测潮位吻合较好,高、低潮潮位与实测结果一致。 潮位平均误差在 10 cm 以内,潮时误差在 15 min 以内。董家口港海域垂线测点和 ADCP 走航断面 流速、流向验证见图 5、6。可以看出,计算的流 速和流向过程与现场实测资料吻合较好,平均误差在 10 cm/s 以内。绝大部分时刻涨落潮流速、流向以及转流时间均与实测结果均较一致,符合相关规范要求。

平均流速、流向验证

3 涌浪传播分布特性分析

根据 2006 年 9 月—2007 年 9 月的波浪($H_{1/10}$) 实测报表中有效数据记录统计得到:本海区波浪 属风涌混合浪。波向主要分布在 ESE—SSE 向,占 比 59.52%;其中 SE 向为常浪向(29.34%)。而 $H_{1/10} \ge 2.0$ m 出现的频率在 ESE 向最大,为 0.68%。观测期间出现过实测单个波最大周期达 11.8 s,对应的单个最大波高为 1.4 m^[15]。依据波 浪实测数据统计结果,以常浪向和大浪向不同高 度级别的涌浪为波浪边界条件,计算董家口港海 域涌浪传播和分布特性。涌浪计算工况共 12 组, 见表 1。

沼油计笛如为

水 1 /用水川异组八			
边界涌浪有效波高/m	浪向	浪级	波周期/s
2.0	ESE	中浪	8.0
2.5	ESE	中浪	8.0
3.0	ESE	大浪	8.0
4.0	ESE	巨浪	8.0
2.0	SE	中浪	8.0
2.5	SE	中浪	8.0
3.0	SE	大浪	8.0
4.0	SE	巨浪	8.0
2.0	SSE	中浪	8.0
2.5	SSE	中浪	8.0
3.0	SSE	大浪	8.0
4.0	SSE	巨浪	8.0

不同边界条件下董家口港海域涌浪有效波高 分布见图 7。模型边界处不同级别的涌浪从外海 (280 km)传播到董家口港海域后会发生较大衰减 (过半),不同方向的涌浪衰减率不同。从有效波 高角度看、ESE、SE 和 SSE 方向 2.0 m 高涌浪传 播到董家口近海后分别衰减至 1.07、0.83 和 0.50 m, 2.5 m 高涌浪衰分别减至 1.22、0.95 和 0.58 m. 3.0 m 高涌浪分别衰减至 1.34、1.04 和 0.64 m; 4.0 m 高涌浪分别衰减至 1.49、1.16 和 0.72 m。可见涌浪在边界处的初始波高越大, 传 播到董家口港海域后衰减率越高。ESE 方向传播 的涌浪衰减率最低,同时也解释了大浪多发生在 ESE 方向的原因。从平均波向角度看, ESE、SE 和 SSE 方向涌浪传播至董家口港附近海域后, 受 近海等深线影响,平均波向分别演化至 104°、 117°和130°左右。波周期在涌浪传播过程中几乎 不发生变化。董家口港池内由于防波堤的掩护作 用,受波浪影响较小。波浪传播至近岸的黄家塘 湾和棋子湾后,水深变浅引起波浪破碎,波高衰 减剧烈。

图 7 不同边界条件下董家口港海域涌浪有效波高分布

4 涌浪对潮流的影响分析

从船舶安全航行角度看,波浪是影响船舶的 运动姿态的因素之一,而由于大型船舶对惯性力 较为敏感,海流是船舶运动的主要外界动力要素。 以 ESE 方向涌浪为例,研究波流耦合作用下,一 个涨落潮周期内(低潮→高潮→低潮)不同波高边 界条件的涌浪对潮流的影响(波生流)。特征点位 置见图 8, 其中 S₀₁、S₀₂为港外开敞海域代表点; S_{03} 、 S_{04} 为近岸浅滩代表点(棋子湾和黄家塘湾); S₀₅~S₀₉为港区进口代表点。波生流大小随潮时变 化见图 9。从整体上看,涌浪的有效波高越大,对 董家口港区附近潮流造成的影响越大。低潮时对 波生流的影响明显大于高潮时,这是由于低潮时 总水深变小, 更容易达到波浪破碎条件。在开敞 海域处(S_{01} 和 S_{02}),涌浪对潮流的影响较小,一般 在 0.01 m/s 以内; 在棋子湾和黄家塘湾近岸处 $(S_{03} n S_{04})$, 涌浪对潮流的影响最大, 此处波浪发 生破碎,影响最大可达 0.25 m/s; 而在董家口港外 (防波堤外), 涌浪对潮流的影响一般在 0.06 m/s 以

内,且落急时刻的影响明显大于涨急时刻。ESE 方向、有效波高4m边界涌浪条件下,低潮时董 家口港海域波生流分布见图10。可以看出,董家 口港外开敞海域中波生流一般在0.02m/s以内, 流向整体呈W向,在达到日照沿岸后转S向;防 波堤外涌浪对潮流的影响稍大,方向也较为复杂, 但其大小仍在0.1m/s以内,为天文潮最大流速的 5%~7%,对船舶影响较小;涌浪在黄家塘湾附近 发生破碎,引起海岸波生流。波生流在到达吉利 河口后分别沿 NE和SW两个方向前进,大小在 0.25m/s左右。近岸湾口浅滩波浪破碎导致的波 生流虽大,但由于水深较浅,不在船舶工作区间 内,因而不会对大型船舶航行和操纵造成影响。

图 8 代表点位

图 9 波生流在一个涨落潮周期内的变化(低潮→高潮→低潮)

5 结语

1) 从外海传至董家口港附近的涌浪,其有效 波高一般会衰减到初始值的一半以下,衰减率按 近线性;波高初始值越大,衰减越剧烈。ESE 方 向的涌浪在其传播过程中更难衰减,这是大浪多 发生在该方向的原因。

2) 涌浪的有效波高越大波生流越大,低潮时涌 浪对潮流的影响明显大于高潮时。船舶工作区波生 流一般在 0.1 m/s 以内,为潮流最大流速的 5%~ 7%;湾口浅滩在低潮时波生流大小达 0.25 m/s。

(下转第67页)

- [6] 吴月勇,陈国平,高晨晨,等. 航道开挖对波浪传播影响的试验研究[J].水运工程,2017 (5):92-97.
- [7] 唐玮,杨粤茗,董焱赫.整体物理模型试验在人工岛排 水设计中的应用[J].水运工程,2021 (10):78-84.
- [8] 孙鹏,陈海英,周益人,等.长江口横沙东滩典型海堤越 浪量现场和试验研究[J].海洋工程,2019,37(4): 27-34.
- [9] 戈龙仔,栾英妮,陈汉宝,等.斜向波作用下防波堤衔接 段块体的稳定性和沉箱结构上波浪力试验研究[J].海 洋通报,2021,40(1):113-120.
- [10] 孙大鹏,修富义, 王键, 等. 基于 FLUENT 扭王字块体

护面斜坡堤越浪量的数值研究[J].水道港口,2021, 42(3):281-288.

- [11] 段岳,高华喜,孙宇飞,等.规则波作用下斜坡堤越浪量的数值模拟[J].水运工程,2022(1):1-6.
- INSTITUTION BRITISH STANDARD.Maritime structures-Guide to the design and construction of breakwaters: BS 6349-7[S]. London: BSI, 1991.
- [13] THORESEN CARL A. Port designer's handbook[M]. London: Thomas Telford Limited, 2014.

(本文编辑 武亚庆)

(上接第47页)

3)董家口港区的涌浪主要通过波浪对船体的 直接作用影响船舶运动,通过波生流间接对船舶 惯性的影响较小,一般可忽略不计。

参考文献:

- BABANIN A V, JIANG HY. Ocean swell: how much do we know [C]//American Society of Mechanical Engineers. Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. NewWork: American Society of Mechanical Engineers, 2017: 1-8.
- [2] ARDHUIN F, CHAPRON B, COLLARD F. Observation of swell dissipation across oceans [J]. Geophysical research letters, 2009, 36(6): 1-5.
- [3] 陈奇. 长周期波浪作用下的大型船舶系泊特性研 究[D]. 舟山:浙江海洋学院, 2014.
- [4] 张先武,张华平.长周期涌浪作用下斜坡式防波堤结构 优化设计[J].水运工程,2015(1):58-62.
- [5] 李懿,牛红林,薛丁源.斜向长周期涌浪作用下斜坡式 防波堤结构稳定性优化[J].水运工程,2018(9):69-75.
- [6] 李龙浩,支远哲,严庆新,等.考虑长周期涌浪影响散货船运动响应研究[J].武汉理工大学学报(交通科学与工程版),2021,45(1):137-140.
- [7] 邹红霞,陈国平. 不规则波作用下潜堤透射系数的计算 方法及统计分布[J]. 水运工程, 2010(3):11-16.
- [8] 潘冬冬,郝嘉凌,王红川.规则波作用下潜堤透浪系数 数值模拟[J].水利水运工程学报,2017(1):95-102.

- [9] HUR D S, LEE W D, AN S W, et al. A numerical study on flow control structure of a new-type submerged breakwater[J]. Journal of Korean Society of Coastal and Ocean Engineers, 2010, 22(3): 181-190.
- [10] 王科,许旺,张志强.近自由水面水平板式防波堤消波 特性及消波机理研究[J].船舶力学,2010,14(4): 362-371.
- [11] 边峰,黄哲,琚烈红.不同结构形式潜堤消浪性能物理 模型试验研究[J].水运工程,2020(8):36-41,58.
- [12] BOOIJ N, HOLTHUIJSEN L H, RIS R C. The "Swan" wave model for shallow water[C] //The American Society of Civil Engineers. Proceedings of 24th International Conference Coastal Engineering. Washington: ASCE, 1996: 668-676.
- [13] QI J H, CHEN CS, BEARDSLEY R C, et al. An unstructuredgrid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications [J]. Ocean modelling, 2009, 28: 153-166.
- [14] MATSUMOTO K, TAKANEZAWA T, OOE M. Ocean tide models developed by assimilating TOPEX/ POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of oceanography, 2000, 56(5): 567-581.
- [15] 高义磊. 董家口港区总体规划的水动力分析[D]. 青岛:中国海洋大学, 2012.

(本文编辑 王璁)